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COMMENT 

Domain growth in two-dimensional Metropolis 
cellular automata 

N Menyhard 
Central Research Institute for Physics, PO Box 49, H-1525 Budapest, Hungary 

Received 12 July 1990 

Abstract. The ferromagnetic 2D Ising model with Metropolis spin-flip dynamics is investi- 
gated by computer simulation using checkerboard-type updating. The system is quenched 
from a high temperature disordered state to a low temperature one at T<< T,. Domain 
growth is found to follow dynamic scaling with the value of the domain growth dynamic 
exponent Zds = 1 in some range of time limited by the size of the system. 

In a previous article (Menyhard 1990) the cellular automata (CA) versions of the 
Glauber (Glauber 1963) and Metropolis (Metropolis et al 1953) kinetic Ising models 
with checkerboard updating have been compared in one dimension. We have found 
for the Metropolis CA model, as a consequence of the linear law of motion of kinks 
and antikinks (with velocities U = *1 in the case investigated), critical and domain 
growth dynamical exponents Z,, = Z,, = 1, in contrast to the most common Z,,, Z,, = 2 
behaviour occurring in the case of diffusive kink motion (see, e.g., Kawasaki 1972). It 
has also been pointed out that the Metropolis CA with its faster relaxation to equilibrium 
provides an algorithm superior to usual Monte Carlo ones. 

The question of similar behaviour in higher dimensions has also been raised there 
but not investigated. Nevertheless, in an earlier paper by Viiials and Gunton (1986) 
some results have been reported for the ZD Ising model under the conditions of deep 
quench below the ferromagnetic transition point. These authors, using the Metropolis 
CA kinetics, made computer simulation of the k = 0 component of the non-equilibrium 
dynamical structure factor S (  k, t )  and reported a quicker than power law dependence 
in time. 

In this comment we want to bring evidence of the presence of the linear law of 
motion also in 2~ domain growth kinetics induced-under the conditions of deep 
quench-by the Metropolis spin-flip dynamics applied with checkerboard updating. 
Due to the faster relaxation to equilibrium as compared to, e.g., Glauber-type domain 
growth, the time interval in which scaling prevails is rather limited by the finiteness 
of lattice size. 

We consider the ferromagnetic Ising model in a square lattice of size L with 
Hamiltonian 

-J 

where the sum extends over the four nearest neighbours. si = i l  and { s i }  denote the 
states of all spins. The dynamics of the model is given by a stochastic interaction with 
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the heat bath. The Metrolis rule (Metropolis et aZ 1953) for the single spin-flip transition 
rate at site i is given as 

W, = min{ 1, e-*H} (2) 

where AH = ( 2 5 / k T ) s i  E,,,, sj is the energy needed for the flip; the sum runs over the 
four nearest neighbours of spin s,. This rule is applied at the temperature T<< T, of 
the quench after starting from a disordered situation ( T  = 00).  Domain formation and 
growth takes place until equilibrium is reached. Checkerboard updating (Vichniac 
1984, Pomeau 1984) ensures that the equilibrium state will be a ferromagnetic Ising one. 

To characterize the time development of domain growth we have investigated two 
quantities: the ferromagnetic, k=0, peak of the structure factor which is the non- 
equilibrium mean square of the magnetization density ( N  = L2)  

S(0, t )  = N ( M 2 ) ( t )  = N (1/ N )  1 si ([ I 3’) 
and the average energy density 

E ( t )  (( - J /  kTN)  SJ,). 
i ,J 

(3) 

(4) 

Scaling (see, e.g., Sadiq and Binder 1983) implies the length measures L ( t )  and 
L , ( t ) :  

[L(t)12 = S(0, t )  (5) 

L ( t ) a  t X  (6) 

L , ( t )  = [ I + ( ~ T / ~ J ) E ( ~ ) ] - ’  (7)  

L,( t )  cc tY.  (8) 

with 

and 

with 

LY1( t )  is the average perimeter length per unit area. 
These two lengths have been measured. The system has been prepared in a com- 

pletely random state with ( M )  = 0 at time step t = 1 and rule (2) has been applied from 
time step t = 2 on at a temperature p = e-4J’kT = w3. ( p ,  = 0.1716 for the 2~ king 
ferromagnet). We have investigated lattices of sizes L = 50, 100 and 200 and averages 
over 700 independent runs have been performed. The high number of averages is 
necessitated by the non-self-averaging nature of the structure factor (Milchev et aZl986). 

Figure 1 shows L2(t) while on figure 2 L ; ’ ( t )  is plotted as a function of time on 
a double logarithmic scale for different values of L. These curves can be fitted with 
straight lines in the time interval starting after the first few time steps and ranging up 
to t l O =  L/2.  From the respective slopes we get 

x = 1.0*0.02 y = 0.99 * 0.02. (9) 
At t I o  the system gets very close to its equilibrium arrangement of spins, domain 

growth is practically terminated and consequently the scaling regime as well. This 
happens for a lattice of size L2 if 

S(0, 4 0 )  a L2(M2),,a r : ,  (10) 
giving t l o=  L. Here the observed time dependence, (9), has been made use of, 
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Figure 1. The dynamic structure factor at the ferromagnetic Bragg peak as a function of 
time for three values of the lattice size L. 
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Figure 2. T h e  inverse of the second characteristic length, L, , proportional to the average 
domain-wall energy as a function of time for three values of the lattice size L. 

It is worth comparing this with the case of the Glauber domain growth dynamics, 
where from the well known Allen-Cahn (1979) law 

S(0, t , o )  a L2(M2)eqX t l 0  (11) 

tloa L2 follows. Thus, for given L, the scaling regime is much wider in the diffusive 
case, as can be observed in computer simulations. 
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The domain growth dynamic universality class of the Metropolis CA model in 2~ 
differs from that of the Glauber dynamics: from the obtained values of x and y, (9), 
through 

Z,, = 1 follows, while z d ,  = f in the Glauber case. From a similar relation applied to 
L,( t)  the same dynamic exponent results whithin the error of the computer simulation. 
Thus scaling is valid with one characteristic length in the system manifested by the 
equality of x and y. This is contrary to the I D  case (Menyhard 1990) where x = 1 but 
y = f . It is worth mentioning that for both dimensions 1 and 2 the Metropolis rule 
applied with random sequential updating yields x = y = f . 

Why does Metropolis dynamics (with checkerboard updating) lead to such domain 
growth properties? Rule (2), considered as a CA rule, has the properties of being (i)  
deterministic at T = 0; (ii) dependent upon the state of the centre cell (outer totalistic 
in the terminology of Packard and Wolfram (1985)) and (iii) connected with property 
(ii), non-symmetrical about AH = 0; Wi(AH = 0) = 1. In I D  (Menyhard 1990), as a 
consequence of these properties, and the fact that checkerborad updating does not 
induce randomness in the system (in contrast to usual Monte Carlo), domain walls 
(kinks or antikinks) move with constant velocity (U = +l or U = -1, respectively) making 
two steps on the lattice in the course of a complete updating procedure leading to the 
behaviour & = 2t for the coherence length of the domain growth problem (quenching 
to T = 0). In 2~ domain wall motion is driven by curvature; the coherent movement 
of larger curved sections of domain walls or of the whole boundary of some domain 
takes place steadily with maximal velocity in the direction of emptying or filling up 
some up-spin- or down-spin-phase domain. At some finite L this goes on until there 
are no longer any larger-scale changes (flat domain walls) and then the scaling regime 
terminates, the characteristic quantities-as apparent on figure 1 and 2-level off. All 
these hold only for deep quenches ( p  = 0.001 was chosen in the present computer 
experiments). 

Concerning the equality or non-equality of the exponents in (6) and (8), x and y, 
the I D  case is pathological and the 2~ case is typical. In I D  the only way of changing 
the domain wall energy, i.e. LT', is the annihilation of a kink with an antikink, the 
rate of which is determined by the (random) initial state of the lattice (see for references 
Menyhard 1990). Hence the special dependence upon t of L;', which coincides with 
the average density of kinks, there. This peculiarity is no longer present in 2 ~ ;  the 
vanishing of domains is only one possibility of changing the average perimeter of 
domain walls. The mechanism for changes in time of the structure factor is not different, 
in principle, from that of the domain wall energy, thus they scale in the same way. 
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